
 

COL728 Minor1 Exam 
Compiler Design 
Sem II, 2016-17 

Answer all 5 questions                                                                                       Max. Marks: 20 
 
 

1. Short questions 
 

a. Show that every regular language is also a context-free language [2] 
 
We know that every regular language can be represented by a regular expression which can 
have terminal symbols and union, concatenation and kleene operators. If we can show that 
all regular expressions can be written in form of CFG grammer rules which have only a non 
terminal on LHS, then we can say that every regular language is also a CF Language. 
So if a regular expression has only a terminal symbol a, then it can be represented by 
grammar rule S -> a 
Any concatenation between two regular expressions S1 and S2  (S1.S2) can be represented 
by grammar rule S -> S1.S2 
Any union between two regular expressions S1 and S2 (S1+S2) can be represented by 
grammar rule S -> S1 | S2 
And kleene star on a regular expression S  (S*) can be represented by grammar rule S -> 
S.S | ε 
 
Thus we can represent any regular expression in form of CFG rules. So we can say that 
every regular language is also a context-free language. 
 
 
 
 
[Full marks for translating regular grammar or DFA to Contect free grammar.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
b. Why does the lexer use regular languages but the parser use context-free languages? 
Explain both reasons briefly and clearly, i.e., (1) why does the lexer use regular languages, 
and  (2) why does the parser use context-free languages. [2] 
 

(1) Typically we want to design the language for the tokens/identifiers so that it is easy to 
identify them.  Regular languages is perhaps the simplest class of languages that are 
easy to identify using a deterministic finite automaton. 

 
(2) Certain intuitive programming patterns, like balanced parentheses, are commoly 

required in programming languages.  These constructs are not expressible through 
regular languages. Hence, typically the language of valid programs is based on a 
more general class of languages, namely context-free languages. 

 
 
 
 
 
[1 Mark for each reason, reason should be something similar to this.  It is important to 
say that regular languages are the simplest class of languages and hence most 
programming languages rely on it.  It is also important to say that regular languages 
do not capture certain common and intuitive programming patterns.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
2. Consider the following grammar: 
 
E → if E then E 
E → if E then E else E 
E → id 
 

a. Show that this grammar is ambiguous [2] 
 
Suppose we have a string “if id then if id then id else id” and we want to make its left most 
derivation tree. Then there are at least two LMD trees for it as shown below: 
 
E -> if E then E if E then E 
E -> id if id then E 
E -> if E then E else E if id then if E then E else E 
E -> id if id then if id then E else E 
E -> id if id then if id then id else E 
E -> id if id then if id then id else id 
 
Another way 
 
E -> if E then E else E if E then E else E 
E -> id if id then E else E 
E -> if E then E if id then if E then E else E 
E -> id if id then if id then E else E 
E -> id if id then if id then id else E 
E -> id if id then if id then id else id 
 
 
 
Hence there are multiple LMDs for the same string in this grammar, so this grammar is 
ambiguous. In other words, the grammar is ambiguous because it has two parse trees for 
some string. 
 
[full marks for correct example; 1 mark if only meaning of ambiguity is well 
understood] 
 
 
 
b. Write an alternative grammar that accepts the same language but is not ambiguous. 
Clearly state the rule that you used to resolve the ambiguity (any rule that resolves ambiguity 
is okay).  [3] 
 
 



 

Unambiguous grammar accepting the same language is written below. Ambiguity in above 
grammar was because else could be assigned to any if instead of the nearest unmatched if 
that came before it. So we created two different non-terminals: one representing the set of 
balanced strings and another representing the set of unbalanced strings.  A string is 
balanced if every if-then is also matched with an else. A string is unbalanced if some if-then 
is not matched with an else. 
 
An “else” can appear only if the string inside the “then” clause is balanced (because 
otherwise the “else” should have matched the unblanced clause). 
 
 
E -> E_balanced | E_unbalanced 
E_balanced -> if E then E_balanced else E_balanced | id 
E_unbalanced -> if E then  E_balanced  else E_unbalanced | if E then E 
 
 
[If any grammar is stated that removes ambiguity of to which “if”, an “else” belongs, 
and covers all strings then it gets full marks; missing some strings looses 1 mark, still 
ambigous looses 2 marks] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.  Consider the following grammar: 
 
E →  id 
E → (E) 
E → E.E 
 



 

Run the recursive descent parsing algorithm (with backtracking) on the following input: 
 
(id)((id)) 
 
Clearly and concisely show the steps and the final result.  No marks for partial or incorrect 
execution [4] 
 
To start with, we should add a new start symbol which includes the $ character to signify that 
it matches only if the end of the input has been reached: 
 
S → E$ 
Can draw a recursion tree as follows (shown without S here).  
  

 
The answer should clearly point out that the match fails for “(id)” because the end of input 
has not been reached. Ideally the student should have used the S → E$ production to 
capture this. 
 
4.  Consider the following grammar, and answer the following questions clearly. 
 



 

E →  id 
E →  (E * E) 
E →  (E + E) 
 

a. Is this grammar LL(1)? [2] 
 
 
No the grammer is not LL(1) as there are two rules for same non terminal E which start with 
“(“, so grammar is not left factored and hence is not LL(1). 
 
We can also say that First (“(E+E)”) = “(“ and First(“(E*E)”) = “(“ 
So in parsing table, T[E, (] will have both (E+E) and (E*E) causing a conflict. So the grammer 
is not LL(1). 
 
 
 
 
 
[full marks for correct reason; No marks for just yes or no] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Is this grammar SLR? [4] 
 
 



 

DFA of items for SLR parsing of this grammar is shown below. There are no Shift reduce or 
reduce reduce conflicts in them, so this is SLR grammar. 
 

 
 
 
 
 
 
[full marks for correct reason; No marks for just yes or no; partial marks for partially 
correct DFA] 
 
 
 
 
 
 
 
 
 
5. Give an example of a program (in a programming language of your choice) that is a 
correct program as far as the parser is concerned (i.e., the parser accepts that program as a 
valid program), but is not a correct program otherwise (i.e., the semantic analysis step would 
discard the program as invalid).  [1] 



 

 
 
 
Many examples. E.g., a C program with addition operator between a function identifier and 
an integer etc. Basically any program in which we expect the type checker to fail. 
 
 
[Full marks for correct example] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alternate working for Q3: 
 
Functions for this grammer are: 
Bool token(x) { 



 

    return (next++ == x); 
} 
Bool S() { 
    Return E() && token(‘$’);  
} 
Bool E() { 
    TOKEN *save = next; 
     Return ((next=save, E1()) || (next=save, E2()) || (next=save, E3())) 
} 
Bool E1() { 
    return token(‘id’); 
} 
Bool E2() { 
    Return (token(‘(‘) && E() && token(‘)’)); 
} 
Bool E3() { 
    Return (E() && E()); 
} 
 
Input is  
Tokens : (   id   )   (   (   id   )   )   END 
Indexes: 0  1    2  3   4  5  6   7   8 
 
Execution sequence will be: 
 
call S 
call E 
  call E1 

terminal id != ( false 
 
  || 
 
  call E2 

terminal ( == ( true 
&& 
call E 

 call E1 
 terminal id == id true 

&& 
terminal ) == ) true 
fail as next is not equal  to End of Input 

 
  || 
 
  call E3 

call E 



 

 call E1 
 terminal id != ( false 
 
 || 
 
 call E2 
 terminal ( == ( true 
 && 
 call E 
 call E1 
 terminal id == id true 
 && 
 terminal ) == ) true 

&& 
call E 

 call E1 
 terminal id != ( false 
 
 || 
 
 call E2 
 terminal ( == ( true 
 && 
 call E 
 call E1 
 terminal id != ( false 
 
 || 
 
 call E2 
 terminal ( == ( true 
 && 
 call E 
 call E1 
 terminal id == id   true 
 && 
 terminal ) == ) true 
  true 
 
Note :- Although this sequence will never be able to parse (id id). So it seems wrong 
somewhere. 
 
So final result is parse is successful with LMD :- 

S -> E$ -> EE$ -> (E)E$ -> (id)E$ ->(id)(E)$ -> (id)((E))$ -> (id)((id))$ 


